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Science, Computational Science and Computer Science: At aCrossroadsD. E. StevensonDepartment of Computer ScienceClemson UniversityClemson, SC 29634-1906(803) 656-5880 or steve@cs.clemson.eduAugust 16, 1993AbstractWe describe computational science as an inter-disciplinary approach to doing science on com-puters. Our purpose is to introduce computa-tional science as a legitimate interest of com-puter scientists.We present a foundation for computational sci-ence based on the need to incorporate compu-tation at the scienti�c level; i.e., computationalaspects must be considered when a model is for-mulated. We next present some obstacles tocomputer scientists' participation in computa-tional science, including a cultural bias in com-puter science that inhibits participation. Fi-nally, we look at some areas of conventionalcomputer science and indicate areas of mu-tual interest between computational science andcomputer science.Keywords: education, computational sci-ence.1 What is Computational Sci-ence?In December, 1991, the U. S. Congress passed theHigh Performance Computing and CommunicationsAct, commonly known as the HPCC . This act fo-cuses on several aspects of computing technology, buttwo have received the most attention: (i) computa-tional science as embodied in the Grand Challenges(Table 1) and (ii) the National Research and Educa-tional Network (NREN ). The NREN is to be a net-work of extremely high speed, capable of transmit-ting in the terabit per second range|approximatelyten times faster than we can currently transmit data.

The Grand Challenges are engineering and scienti�cproblems considered vital to the economic well-beingof the United States. Many of these problems, such asdrug design and global climate modeling, have world-wide impact. The exact goals of the HPCC are pub-lished in a pamphlet and updated yearly[14].The science and engineering components ofthe HPCC require an interdisciplinary approach tosolving very di�cult problems. The solutions re-quire the concerted actions of physical scientists, en-gineers, mathematical scientists, and computer scien-tists. Computational science embraces this collabo-rative e�ort among many diverse disciplines. Evenin the �nal analysis, the \answer" may have to bepieced together from the many viewpoints.Our purpose is to ask whether today's com-puter scientists are able to take up the challenge ofcomputational science. Some might argue that com-putational science is not an interest of computer sci-ence; that current areas of interest comprise the totaldomain. Indeed, it is strange that one has to arguefor scienti�c applications as a part of computer sci-ence, since, after all, modern computing's roots arein scienti�c and engineering applications.An exact de�nition of computational scienceis open to debate. There are many programs in theAstronomy Semiconductor DesignHuman Genome Mapping Structural BiologyHigh Tc Semiconductors SuperconductivityMolecular Design of Drugs Underwater AcousticsNaval Architecture Weather, Climate,and Global ChangeModelingQuantum Chromodynamics VisionTable 1: Grand Challenges1
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Crossroads August 16, 1993 2United States and elsewhere that use the term andeach program probably has its own view of computa-tional science. We outline the Clemson view to com-putational science as one possible approach. Thatview recognizes three components to computationalscience: applications, algorithms, and architectures.We visualize this as a pyramid supporting the sci-ence and engineering. Applications need not be re-stricted to the traditional science and engineering ap-plications; for example, complex econometric modelscan also bene�t from computational science.The conduct of computational science, in theClemson view, is interdisciplinary. This interdisci-plinary thinking demands that the constituent disci-plines (physical sciences, engineering, mathematics,computer science) maintain their autonomy. Withincomputational science, a computer scientist retainsher/his expertise in computer science, but empha-sizes applications in science or engineering.We argue that although computational scienceis not for every computer scientist, computational sci-ence is an idea whose time has come|again. Ourpremises:1. Computational science is addressing problemsthat have important implications for humankind.These problems are complex and their solutionsdesirable.2. Computational science is unlikely to succeed inthe near term without further advances in soft-ware and hardware. Without computer scienceinvolvement, the solutions to these problems willtake much more time.3. Computer science is generally not participatingin science and engineering applications, nor is itpreparing students to do so in the future.We present evidence for point 3 and we propose someremedies. We hasten to add that all the constituentdisciplines may be in similar situations; see, for ex-ample, comments adapted from Robert Pike in Com-puting the Future[30, page 126]. We further point outthe obvious changes at the foundations of the scien-ti�c method as evidence for these intra-disciplinarychanges.In Section 2 we present the Clemson view ofcomputational science and describe the role of variousdisciplines. This section primarily addresses issues inthe philosophies of science and of mathematics. Sec-tion 3 presents partial evidence that computer scienceis not participating in, nor preparing students for,computational science. Section 4 we propose someactions that computer science can take to prepare for

computational science: both in education and in re-search.2 The Challenge of Computa-tional ScienceThis section is primarily philosophical in nature. Wediscuss four principal areas. The �rst area is the envi-ronment of computational science, with emphasis onthe general method of investigation. The second areafocuses on methods, in which we outline our view ofmodeling. The third area relates to the relationshipamong the scienti�c application, algorithms, and thearchitectures. Finally, there is a question of the ve-racity of a computation.This section is intended to address a broad-based audience|computer scientists, primarily, butphysical scientists, engineers, and mathematicians aswell. We do not assume that the reader is currentlyactive in computational science.2.1 The Environment of Computa-tional ScienceComputational science is an emerging discipline char-acterized by the use of computers to provide detailedinsight into the behavior of complex physical systems.Computational science uses computational methodsto conduct experiments which are either too expen-sive or, in fact, impossible to conduct in the realworld. A simple perusal of the scienti�c literatureclearly shows that computer simulation is enormouslyfruitful in most �elds. The interplay of experiment,traditional theory, and computational modeling hasstrong, symbiotic results. The simulations can beused to provide unique insight into physical processes.In order to improve this capability, the full power ofcomputing technology must be available to the scien-tist and engineer. There are many aspects to com-puting technology and we emphasize that computa-tional science is not synonymous with supercomput-ing. Much scienti�c and engineering work takes placeon workstations; it is as important to have correct an-swers from a workstation as from a supercomputer.The proper subject of computational science is propermodeling and correct computation.The modern view of science recognizes an in-terplay between theory and experiment. This viewwas �rst presented in a polished form by Bacon inthe Novum Organum1 in the 17th century. Indepen-1The Organum is Aristotle's work on reasoning and the sci-enti�c method. Bacon's book is oriented towards changing theattitudes of his day which Bacon attributed to slavish following



www.manaraa.com

Crossroads August 16, 1993 3dently, Kepler and Galileo emphasized mathemat-ics as the language of science. These two thoughtshave been merged into the foundations of modern sci-ence. Modern science and engineering arose throughthe interplay of theory and experiment: theories areproposed and the role of experiment is to sort thetheories out. Mathematics has not been a bone ofcontention2. However, there are problems with dif-ferences between some areas of classical mathematicsand mathematics needed for computation[21].The standard model of scienti�c enquiry mustbe altered to include computer models. A simpli�edversion of the new (proposed) process:1. A modelM is derived from physical or engineer-ing principles. M may contain submodels previ-ously developed.2. M is further developed using numerical tech-niques into perhaps many computational modelsCi.3. The computational models Ci serve as a basisfor experiments, using visualization techniquesor perhaps automated tools, to explore and val-idate the model M. Experiments or data fromreal examples of the system are processed as themodeler attempts to validate the modelM.4. At some point, the computational models Ci pro-vide insights into the physical behavior of thesystem under study. M will continue develop-ment through re�nement based on the results ofthese computational experiments.In our view, computational aspects must beconsidered during model formulation. The computeris too often seen as capable of very fast computation,but rarely are �nite arithmetic, numerical algorithms,architecture, and program construction taken into ac-count in scienti�c formulations. The scientist or engi-neer who avoids these considerations is at a grave dis-advantage. In the same way that sloppy experimentaltechnique cannot be tolerated, so too the inappropri-ate marrying of applications, algorithms, and archi-tectures cannot be tolerated in computer modeling.It is important to realize that computer technologycan be applied inappropriately. On the positive side,the computer allows scientists and engineers to haveunprecedented control over their models.The computer now allows the use of non-linearmethods where non-physical assumptions were re-quired before (see Section 2.2). A simple exampleof Aristotle. Science in the 17th century was oriented towards\reasoning" but not \experimental veri�cation."2Except for some areas like quantum logic. See [5].

in every sophomore physics book is the pendulum: ifwe do not make the \small angle assumption", theresultant di�erential equation usually makes use ofelliptic functions for its solution. Instead of havinga nice analytic function to investigate, we must in-stead run many \numerical experiments" before wecan understand the behavior of the pendulum. Suchexperiments must be carefully performed and docu-mented and are always subject to both computer andhuman error. Thus, computation becomes part of thephilosophy of science.Technical innovation is not without its conse-quences for the computational scientist. Computa-tional power is often not accessible due to the exoticnature of some of the newer architectures (e.g., hy-percubes) or the admitted di�culty of programmingand debugging the models. Older, validated mod-els often are di�cult to port to the newer architec-tures. Algorithms that work on one architecture areoften inappropriate on another. Looking to the fu-ture, we see even more exotic hardware that mustbe integrated into an already complex environment.Heterogeneous computing environments are currentlyavailable to large corporations and national labora-tories. Computational science is thus involved in de-livering technology, directly to the scientist and engi-neer, while at the same time actually enhancing fun-damental scienti�c models.Computational science focuses upon with thedevelopment of computationally feasible models forphysical systems, developing algorithms for solvingissues arising in the modeling process, and matchingalgorithms to computer architectures. This shouldbe accomplished in an environment that frees thescientist and engineer from the con�nes of low-levelprogramming. The role of computational scienceis to provide the scientist tools and computationalenvironments which allows fruitful exploitation ofavailable resources without having to resort to non-physical approximations simply to reduce the modelto mathematically tractable form. Scientists shouldnot have to be concerned that the computing engineis scalar, vector, and/or parallel with shared or dis-tributed memory. Rather, with an appropriate envi-ronment in which to describe the model and to specifythe spatial con�guration and interactions, the detailsof the solution within a class of algorithms should berather transparent. The lack of a cohesive program-ming model is perhaps the biggest obstacle to com-putational science. Who better to address this lackof a programming model than computer science?Our view of \computational science" empha-sizes interdisciplinary involvement in the scienti�cprocess. The Clemson Program has three goals:
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Crossroads August 16, 1993 4Goal 1. To �nd and eliminate unwarranted as-sumptions and approximations in models;Goal 2. To correctly marry the appropriate al-gorithms to the appropriate architectures givena model and its parameter space; andGoal 3. To deal with the complexity and veracityof the programming process.The primary impact of computational science will bethe development of a new view of science. In order tounderstand the role of this proposal in the develop-ment of computational science, we describe our visionof how computational science will evolve. Sections 2.2through 2.4 address these goals.2.2 New Foundations|the NewNovum OrganumComputational science places science and engineering�rst and makes sound scienti�c modeling the basis.The model re
ects the scientist's or engineer's under-standing of the physical system. Almost inevitably,the models incorporate assumptions about how a sys-tem operates. These physical assumptions require theuse of mathematical approximations. Such assump-tions we call physical since they are open to validationprocedures within the science. A model with onlyphysical assumptions we call (physically) exact. Bycontrast, assumptions introduced into the model formathematical convenience lead to a physically inexactmodel; such assumptions we term non-physical.\Classically derived" models are rarely phys-ically exact. That is, such models include non-physical assumptions needed to produce closed-form solutions. We contend that such modelsare mathematically exact but physically approximate.One is therefore left with a nearly exact solutionof approximated|and perhaps unrealistic|models.We discuss an example below. Anecdotal evidenceshows that often these models may give unsatisfac-tory results when used in a computational setting.An alternative is to reformulate the models to bemore physically exact and therefore more realistic.Unfortunately, these newer models have no closedform and generally are very hard to solve numerically.The lines between physically exact and inex-act may be blurred, but the distinction is useful. Forexample, consider the model of a pendulum such asone might �nd in an undergraduate physics book[16].Figure 1 shows a diagram of a simple pendulum.There is a point mass m at the end of a rigid, mass-less bar of length L. The pendulum swings in an arcmeasured by the angle �. At �, the restoring force
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L

Figure 1: Pendulum Diagram.is �mg sin �, ignoring friction. In this model, theassumptions \point mass", \massless bar", and \fric-tionless" are physical assumptions since they may bevalidated. The equations of motion are given bymLd2�dt2 = �mg sin �: (1)This di�erential equation does not have an ana-lytic solution ( although it does have an ellipticsolution[12]).The next assumption is non-physical: since forsmall �, sin � � �, we can rewrite the equation ofmotion to mLd2�dt2 = �mg�: (2)This latter equation is solvable by analytic methods,leading to the well-known sinusoidal solution. Actu-ally, the assumption that sin � � � is not, in itself, allthat bad as long as we stay in the region for whichthat assumption is true. However, \small" is a di�-cult quantity to determine. For example, if the small-
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Crossroads August 16, 1993 5est relative error of perception of an angle is 10�6 ra-dians, the maximum angle would be about 2� 10�2radians; that would make the maximum swing of atwenty foot chain about four inches. Galileo mightnot have even seen such a pendulum move.It is important to note that the solution to (2)lets one talk about all sorts of silly things. For ex-ample, in this linearized pendulum, one can \windup" the pendulum, say to 4� (two times around) andthe equations of motion will \unwind" between �4�and 4�. No real pendulum3 does this and hencewe would call the model non-physical. Therefore,there is an important distinction between physicaland non-physical models. In our terminology, wewould say that Equation (2) is \physically approx-imate but mathematically exact" while Equation (1)is more \physically exact but mathematically approx-imate". It is mathematically approximate becauseelliptic integrals are solvable only by computation ofseries[12].Since we see computational science as an in-terdisciplinary endeavor, there is a need to mergethe methods and viewpoints from the individual dis-ciplines involved. Under the current methodolo-gies of science, mathematics plays a role as a tool.For the outsider, certain questions about the ba-sis of mathematics are ignored[21]. The most im-portant question for the present discussion is thequestion of computability. Ordinary calculus, astaught to freshmen and sophomores, assumes cer-tain things about existence, leading to impredicativeassumptions that are inherently non-computationalin nature[21]. The reliance on computation in com-putational science opens a very important question:How much of ordinary mathematics is usable inthe computational world? This question has beenaddressed[9, 11, 18, 22, 24, 28, 27] but the results arenot generally practiced. As an illustration as to whythis question is important, take the recent \discov-ery" of chaos. Chaos came to light from computa-tional solutions to problems, but one must be surethat chaos is a physical artifact and not a computa-tional one. Some models were known, such as thelogistics equation, which were chaotic but it was notuntil the computer got involved was this attributeseen. The Clemson Program proposes that modelingproceed by the following principles:� Physical Exactness. We strive to identify non-physical (mathematically convenient) assump-tions and eliminate them.� Computability. We must identify3In fact, the \pendulum" is now a torsional spring.

non-computable4 relationships. No mathemati-cal relationship is exact unless it follows directlyfrom the development of an exact model and iscomputable. In this sense, most mathematicalrelationships turn out to be approximate.� Bounded Errors. No formulation is acceptablewithout a priori error estimates or a posteriorierror results. Because the computation is ap-proximate, we must be able to tell \how good"the answers are.These new models must meet the computational sci-ence criteria of no unwarranted approximations andsuitability for solution on state-of-the-art computers.We emphasize the rederivation of models for theirexactness to physical principles. This should not betaken to mean that we consider only computer solu-tions to these models.To complete this subsection, consider our pen-dulum example in light of the paradigm of sciencegiven earlier. The modelM is that of the non-linearpendulum of Figure 1. Two computational modelscome to mind: C1 as the numerical solution of theelliptic integral or C2 as a numerical solution to thedi�erential equation de�ned by Equation (1). In ei-ther case, g and L are parameters. We would haveto explore the behavior of the pendulum by \solving"the equations repeatedly for di�erent values the pa-rameters. Each run of the computational models isan experiment.2.3 Applications, Algorithms, and Ar-chitectures.Assuming that models have been properly formulateddoes not guarantee that the appropriate numericalmethod(s) or the optimal choice of architecture arechosen for the computational models. Architecturaladvances have made new and specialized machinesavailable. The scienti�c computer center of the fu-ture will have a network of diverse machines. Com-pilers and operating systems will have the di�culttask of managing these dispatchable machines. Thescientists and engineers will want to use these ad-vanced architectures, but the task of knowing whatmachines are suitable for which algorithms and dataranges will become mind-boggling. If one makes sci-entists deal with the intricacies of distributed pro-cessing, it is more likely that productivity will likelygo down rather than up.The optimal algorithms for these as-yet un-known systems are most likely not the ones that are4Impredicative relations are the basis ofnon-computability.[21].
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Crossroads August 16, 1993 6optimal on a von Neumann architecture. Our experi-ence with distributed algorithms for hypercubes, forexample, would indicate that the old algorithms willnot su�ce for the new architectures. The problems ofdesigning, documenting, debugging, and supportinga large library of scienti�c routines have been hintedat in the literature. There is also a problem with anexploding number of versions: often di�ering only inarchitectural details. For example, consider the de-velopment of the so-called Level 3 BLAS[13]. WhenLINPACKwas originally conceived, the only model ofcomputation was the von Neumann model. The BasicLinear Algebra Subprograms|BLAS as they cameto be known|were motivated by vector operations.The BLAS, which were originally considered abso-lutely primitive, have been redesigned several timesas , �rst, vector processors and, then, distributed pro-cessors became available. Designing and tuning sucha project as LINPACK, or its follow-on LAPACK[32],for a large number of incompatible architectures willbe daunting, to say the least.LINPACK also points out the di�erence be-tween mathematics as practiced by the computation-alist and the non-computationalist. For the formalmathematician, it is enough to know that one can in-vert a matrix using something like Gaussian elimina-tion. That algorithm is probably familiar to any un-dergraduate in science (including computer science)and engineering. Gaussian elimination, however, maynot be the best way to compute the inverse on a com-puter. LAPACK, in fact, has found that certain com-puters had to be excluded from consideration if opti-mal error characteristics were to be obtained for theremaining architectures.2.4 Development and Veri�-cation Support for ComputationalScienceThe modeling environment will provide for visualiza-tion of results and tools for developing models in thecomputational science paradigm.One major goal must be to extend the conceptof model derivation to include the numerical and pro-gramming aspects. Programmingmust be consideredan integral part of the modeling process. The scien-tist must believe and be able to verify that the outputof the computer model faithfully re
ects the intendedmodel. Too often, the programming aspect is con-sidered as an independent activity separate from therigorous rules of science and mathematics. For a dis-cussion of these areas, see [15].

3 Is Computer Science Out ofStep?In this section, we focus on computer science and itsplace in computational science. At �rst blush, onewould think that computer science is well-positionedto make important contributions to computationalscience. Certainly computer scientists have the ex-posure to programming and current architectures.Surely we should be able to take the speci�cationsof a model and turn it into code. How hard can thatbe? The reality, however, is quite the opposite. Forexample, in a recent workshop, the following problemspeci�cation was presented:Take a string and tie it around the equatorof the (spherical) Earth. Add l feet to thestring. How high a tower must be built topull the string taut? Find the answer tothe best precision you can and defend thenumber of digits you claim to have found.The algebraic solution, which uses college algebra andtrigonometry concepts, can be found very quickly andis shown in Figure 2. The answer requires solvingan implicit trigonometric equation and then solvinga quadratic equation. The symbolic system is oneform of the answer; it is perfectly acceptable untilthe contractor asks how much steel she should order.Computing the numbers is very di�cult dueto the relative sizes of l and R. The solution is madedi�cult by several cancellations in the computationswhich must be removed in order to obtain the desiredaccuracy. It turns out that one can get about 21 dig-its of accuracy out of 28 digits of precision on a Cray5.To �nd these 21 digits takes a signi�cant amount ofwork, involving many test programs and a good bitof experimentation and testing. The naive solutioncoded in double precision does not work well. Thistype of exercise is very common in computational sci-ence. Are computer science students prepared to dealwith such problems? Certainly they should be if theyexpect to participate in computational science.There are some computer scientists who saythat computational science is a subdiscipline of com-puter science. There are more radical computationalscientists who have suggested that computer scienceshould be abolished. Both extremes seem to missthe mark. We argue that computer science is notcurrently well-positioned to take on the challenges ofcomputational science due to own attitudes toward5We have since done better.
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θLet l be the added length and R denote the radius ofthe \perfectly round" Earth. ThenR2 + x2 = (R+ h)2x = R tan �� � tan � + l2R = 0Figure 2: The World on a String.engineering and science and the attitudes transmit-ted to their students. But we also contend that thereis much computer science to be done in computa-tional science and some computer scientists would dowell to seek out these opportunities. Let us begin byoutlining some reasons why computer science out ofstep with computational science.3.1 Lack of FoundationsIn any mature discipline, there is a basic set of princi-ples. These principles are the \rules of the game" thatcan be called the philosophy of that science. Theseprinciples are known by the workers in the �eld, ifonly informally. Section 2.2 sets out a possible phi-losophy for computational science. For example, the\scienti�c method"[20] arises from the combined ex-perience and criticism of scientists: how they work,what they will accept as good work and what theyreject. Interestingly enough, there may be severalphilosophies in use at any given time.What, then, is a philosophy of computer sci-ence? Where is the critical analysis of methods?Where do we see the skeptical, reasoned approachto the discipline? Computer science stands in dan-ger of falling into the \meaning" trap. Students can

easily see computer science as devoid of meaning andprogramming devoid of empirical import. We teach\problem solving" devoid of problems: little \soundbites" of ideas without a cohesive whole. Arti�cialintelligence seeks to emulate human intelligence byformal token systems devoid of meaning. We developa theory of computational complexity that deals withasymptotic behaviors in regimes far beyond what al-gorithms are called upon to support in practice.All around us the ground rules are changing.Computer scientists are ill-prepared to critically an-alyze their own positions. They cannot determinewhat is new and what is old; what has worked andwhat has not; and why. That does not exempt us,however, from improving our foundations. Thereshould indeed be a philosophy of computer sciencethat addresses the questions of the various positionstaken on various issues. Our students should be madeto understand what is opinion and what is empiricalfact and what the \rules of the game" are. In the sci-ences, engineering and mathematics there are rules ofthe game and these rules must be followed. More im-portantly, we must be able to explain to others whatwe stand for. Here are some areas that need furtherexploration that are of direct interest to computa-tional science:Basic Questions. The philosophies of math-ematics and science explore two issues: (i)what objects exist (metaphysics) and (ii)how do we come to know about these objects(epistemology). Algorithms would seem tobe one of computer science's objects, yettextbooks|and the �eld as well|continueto eschew de�nitions of algorithms. Whatis computational knowledge and how do weachieve it?Literature. What is the literature of com-puter science? Programs? Algorithms?Journal articles? If it is programs, are theseprograms to run on all possible machines?And what are the requirements for verac-ity? Should a program in a journal articlebe expected to run as is?Formal Methods of Program Speci�cations.Should not a program be proven to workand have the behavior described formally?When are formalmethods appropriate? Arethey required to be validated in the sense ofa physical model? What is the empirical im-port of formalisms? How do formalmethods(a formalism) convey meaning (an empiricalconcept)?
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oating point applications arevirtually ignored in the current program-ming, compiler, and data structure texts.When addressed, these issues are addressedwithout application and without any con-cept of correctness.Another pervasive foundational problem is thelack of scienti�c rigor. Most basic to science is aconsensual vocabulary and notation. Science andmathematics have struggled ever since Kepler to de-velop just such a vocabulary. In computer science,though, we have a hodge-podge of de�nitions withno agreed upon foundation. No wonder the scien-tists and mathematicians are frustrated when work-ing with computer scientists. Likewise, computer sci-entists are mysti�ed by the strict notational and de�-nitional framework of the sciences as well as the harshrequirements for proof.3.2 Lack of Integration of Science andMathematicsThe current ACM, CSAB and IEEE recommenda-tions for the computer science curriculum include asigni�cant exposure to the sciences and mathemat-ics. The Clemson curriculum for a B. S. in computerscience is probably typical:1. One year of calculus|but no multivariate calcu-lus and no di�erential equations.2. One semester each of discrete mathematics,statistics, linear algebra and \decision science6."3. One year of natural science|usually biology orchemistry.4. One year of physics.Most of these courses are completed early in the train-ing of the computer scientist. What is missing? Forone thing, numerical analysis is conspicuously absent!The contents of these courses are rarely used in com-puter science courses! On the one hand, we might ar-gue because these things have no apparent relevanceto computer science, we should not waste our stu-dents' time.However, even within the current curriculumthere are problems. Checking my bookshelf for textsused in the data structures-algorithm courses, I �ndnot one of the �ve uses the word \optimal"; it doesnot appear in the index of any of the �ve. I thenlooked for the word \average". Two did not use the6Statistics, probability, linear programming.

term at all. Two have a subsection on average caseanalysis. One actually did some derivations. Nonesuggested any empirical validation. The concept ofoptimal is central to many scienti�c and engineeringdisciplines.As another example, I computed the amountof scienti�c and engineering literature indexed in\ACM Guide to Computing Literature"[2]. Therewere 377 pages used to list the literature by CR cat-egory. Only 17 pages (about 4.5 percent) was neededfor the J.2 Physical Sciences and Engineering cate-gory but 35 pages were devoted to \information pro-cessing" applications. Also interesting is the fact thatonly two pages were devoted to numerical linear al-gebra. Why is so much attention paid to businessapplications? And why so little attention paid to en-gineering and scienti�c applications?We would argue the following: we shoulduse scienti�c, engineering and mathematical con-texts precisely because such contexts represent nat-ural subject areas that the student already under-stands. After all, we live in a physical world. Forexample:� A natural|and perhaps the simplest|way toapproach parallelism is through simple numer-ical models. Nature is inherently parallel andmost students have personally experienced thephenomena which are being modeled.� Natural questions of correctness of computationare usually evident in simple numerical prob-lems.� The vagaries of �niteness can be easily demon-strated in small, easy to understand programs.� The validation of computer models gives empir-ical import to programs and is a natural devel-opment ground for software testing concepts.� Simulations of physical systems are far easierto justify and explain than simulations of non-physical systems.� Some algorithms|simulated annealing and ge-netic algorithms, for example|are derived fromphysical principles. If the underlying physics orbiology is understood, the algorithm is under-stood intuitively.3.3 Lack of Emphasis by FacultyThe above points could be easily overcome if facultyput emphasis on the use of scienti�c principles andproper mathematics. But how many times have we
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Crossroads August 16, 1993 9sloughed o� a di�cult mathematical point as \use-less" when it really is \too hard" to teach or becauseit is hard to understand? The message is clear tothe student: science and mathematics are neither in-teresting nor important or just too hard. More fun-damental, di�cult details can be sloughed o� as in-signi�cant, leading the students into a false sense ofsecurity. If you ignore the hard parts, they cannothurt you.With the possible exception of visualization,computer science has been at odds with science andengineering interests. While there are occasional callsfor \more mathematics" in the computer science cur-ricula, there are just as many who lament the in-clusion of mathematics. Really, now: what is therelationship of mathematics and computer science?Perhaps we would like it to be that \Real computerscientists don't do math|or databases, either."There does seems to be bad blood betweenthe groups. We have all heard pronouncements onthe programming language issue. At a recent con-ference, the author participated on a panel on com-putational science. One computer scientist put outthe suggestion that Fortran should be abolished|without regard to the fact that the community hasmany well-tested, well-understood programs in For-tran, and that most scientists and engineers programonly in Fortran. The argument was that programsin this newer language would be, oh, so much bet-ter because of the work in vectorizing. The scientistscounter|and I am afraid that we are not hearingthis argument well[26]| is that those old, empiricallyvalidated programs are the purpose of programming.Calculating the wrong answer quickly is not any help.Programs are not the object of science, knowledge is.Those old, antiquated programs are well-tested andjive with the empirical relations observed in the realworld. We, computer science, are forgetting the Ham-ming dictum[19]:The purpose of programming is insight, notnumbers.The language debate, if indeed it is a debate, justwill not go away. But are we asking the rightquestions[26]? If we continue with an attitude[26]that the world is waiting with bated breath for thenext program|or programming language|we willnot endure as a discipline. If we continue imbuingour students with this attitude, we will continue tosee declining enrollments as the sciences and engi-neering disciplines draw the best and the brightest.We also run the risk that the application disciplineswill alter their own curricula to embrace the usefulparts of computer science.

3.4 The ResultsThe result of these and other factors is that computerscience (or even perhaps computer engineering) stu-dents do not understand science and are ill-equippedto deal with scienti�c and engineering software. How-ever, computer science students are not irretrievablylost to science. The author has been involved alongwith mathematics and physics faculty in developingcourses for computational science. We have had abroad mix of students, including computer science,mathematical science, physics and engineering stu-dents, who have taken the courses. The computerscience students, after being given the instructionneeded to make up their prerequisite de�cits, per-form very well. Since they already understand pro-gramming, they can concentrate on the algorithms.The non-computer science students �nd program-ming hard and often rely on the computer scientiststo deal with algorithm complexities. The studentsin this class respond enthusiastically when presentedhard problems involving higher mathematics. Onestudent, who is a co-op student, summed it up best:\I'm not sure I'd like to do this for a living, but it'sbeen the most realistic use of my training."Computer science is not the only loser: sci-enti�c and engineering codes are being written usinginappropriate, ine�ective, and ine�cient algorithmsbecause the scientists and engineers are forced to \goit alone." The experience of computational scienceteams, in theory and in practice, is that no one hasto go it alone and that everyone bene�ts from theinterdisciplinary team approach. The problems fac-ing science and engineering are no longer solved by asingle person but by a team. The nature of compu-tational science is inherently interdisciplinary.4 Where Should Computer Sci-ence Put Its E�ort?Computational science is an interdisciplinary areaand thus does not properly contain any one of its sub-disciplines; we do not think of it as an independentdiscipline. All the constituent disciplines must makeadjustments and concentrate e�orts. There are sev-eral di�erent areas wherein computer science can putout e�ort, at the K-12 level as well as the undergradu-ate and graduate level. We argue below that the highschool student is well-equipped to enter the computa-tional science pipeline. At the graduate level, we cano�er programs of study which familiarize the studentswith scienti�c and engineering problems and theircomputational solution. Finally, there are research



www.manaraa.com

Crossroads August 16, 1993 10programs which advance both computer science andcomputational science.4.1 EducationUltimately, we see the academic involvement in com-putational science as spanning high school, under-graduate and graduate studies. Research programsby computational scientists will continue to absorbthe well-trained researcher for many years to come.There is an immediate problem of publicizing theGrand Challenges and justifying to high school andundergraduate students the excitement and impor-tance of these and other problems. This can mostfruitfully be done by developing a sense of curiosity inthe physical world and an appreciation of mathemat-ical and computer modeling. This perhaps includeschanging some cherished teaching modules along theline. We must develop in the students a curiosityrelating to observations of what can and cannot bedone with the computer. As has been seen in compe-titions such as SuperQuest at Cornell University andother state programs7, high school students respondenthusiastically to real problems in science or engi-neering. Even video games, with their goal of real-ism, make use of physical principles. Movies, such asStar Wars, use enormous amounts of supercomputingtime to generate their e�ects. How many computerscience graduates are able to step into any of theseendeavors?Currently, there are too few trained computa-tional scientists to form a critical mass on any oneproblem. We need to provide a program that servesthe secondary school student as well as the post-doctoral fellow. It is necessary to increase interestin numerical analysis, scienti�c software engineering,languages, algorithms and architectures as disciplinesand as requisite knowledge of all computational sci-entists. Under the current situation, the expertisefor computational science comes from the constituentdisciplines.4.1.1 GoalsThe major educational goals of computational scienceat all levels are1. To appreciate the role of computation in scienceand to stimulate interest in computational sci-7There are several state programs. One is put on by theNorth Carolina Supercomputing Center at Research Triangle.The program involves high school students from around thestate in a problem chosen by the students that uses supercom-puting in the solution. Several other states|e.g., Alabamaand New Mexico|have similar programs. Clemson is inaugu-rating a program for South Carolina.

ence.2. To create a healthy sense of what computationcan and cannot do with respect to scienti�c mod-els.3. To instill understanding of the application-algo-rithm-architecture nature of computational sci-ence.4. To expose the students to the consequences ofnot following proper computational practices.the correct ones.The objective is to develop a cohesive, comprehensivefoundation for dealing with numerical methods andsoftware. We must also be careful not to identify com-putational science as the traditional numerical analy-sis course. Numerical textbooks are largely indepen-dent of applications, counter to the computationalscience viewpoint. Too often, students are not intro-duced to pathologies in computation until they areout of school and the results count for real. It is alsotrue that we do not hold scienti�c programs to thesame rigorous standard that the rest of science mustmeet. This latter situation is unacceptable. Suchrigorous standards would be called|at �rst blush|software engineering of scienti�c software to di�er-entiate it from software engineering in its more usualsetting.4.1.2 High School and Undergraduate Pro-gramsWe need a comprehensive curriculum in computa-tional science. Our view is that there need not be aseparate administrative unit to develop a viable cur-riculum. Our initial curriculum is below.1. Each scienti�c or engineering department whichis participating in the computational science pro-gram would make available a course with the ap-proximate title, \Computational Models in X."The purpose of these courses is to give the stu-dents as wide a spectrum of subjects as possibleto choose from.2. Mathematics requirements are kept to a mini-mum. At the high school level, one can dealvery e�ectively at the intuitive level. Signi�-cant problems can be dealt with using only pre-computer concepts such as elementary �nite dif-ference techniques.3. Most of the disciplines at the undergradate levelalready have signi�cant exposure to mathemat-ical science courses. For numerical work, how-
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Crossroads August 16, 1993 11ever, there are three basic requirements: (i) se-quences, convergence, and error; (ii) di�erentialequations; and (iii) linear algebra.4. Computational requirements are likewise part ofmost technical subject areas. There are four sub-ject areas that should be studied:(a) data structures speci�cally oriented to-wards the problems in computational sci-ence. We have developed a list of some sixtyspecialized structures.(b) design of graphical user interfaces. This in-cludes graphics, human-computer interac-tion, and even compiler design.(c) introduction to computability theory, em-phasizing recursion and recursive functions,to understand what is computable and howto think about computation.(d) software engineering of scienti�c software.5. Two computational science modeling courses:one emphasizing techniques for discrete modelsand one emphasizing continuous models.These courses must be developed around moduleswhich emphasize the interaction of the applica-tion (problem); the analysis of numerical and non-numerical algorithms; and the appropriateness of thearchitecture(s) available. This can be done by orga-nizing around three units.1. The �rst unit introduces a problem and shouldbe discussed by someone in the relevant �eld.2. The second discusses possible solution tech-niques. Various approaches should be tested intheir order of intuitive appeal.3. The third unit|given after the students haveprogrammed and studied their solutions|discusses the teaching points. Each unit is ac-companied by written material. The studentswill prepare a report|much like a laboratoryreport|on their solutions and observations.The core problem for most computer sciencecurricula is the lack of mathematics|most notably,the lack of di�erential equations and a solid linearalgebra course. Most curricula now have positive in-volvement and reinforcement in the traditional sci-ences: physics or chemistry. Since there is not amandated curriculum in computer science, one needsto work within the framework of the CSAB checklistand the proposed ACM-IEEE proposal. For exam-ple, the Clemson program is accredited by CSAB and

the needed changes can be accomplished within thecurrent BS curriculum: the student takes a math-ematical science or numerical analysis applicationsemphasis8 and two senior-level modeling courses.We have tested this concept through a spe-cial topics course which included seniors and post-graduates. The course we taught had engineer-ing, physics, mathematics, and computer science stu-dents. In some cases, the problem presented was aword problem form to make the problem focused. Inother cases, we have taken a problem directly fromthe experience of the student or some important prob-lem from the application-oriented students. The trickis to make the problem easily understood.Contrary to the opinion of some, many stu-dents react very favorably to hard problems that arepresented in an intuitive way. Also contrary to opin-ion, many students can deal with higher-level mathe-matical concepts, particularly when developed in thecontext of a real problem. In a tightly controlledclassroom situation, students can explore issues in:1. Floating point arithmetic2. Numerical error and conditioning3. Functional approximation and interpolation4. Linear and non-linear di�erential equations5. Quadrature6. Optimization7. Experimental data techniques8. Tables and interpolationIt is worth pointing out that traditional undergradu-ate mathematics courses are open to much criticismbecause the courses are taught with an emphasis onformulas and theorems but independent of meaning.The richness of calculus, for example, is in its appli-cations. Even with the current reform underway inundergraduate mathematics, we are unlikely to seeBishop's criticisms[8] answered. The upshot is thatundergraduate mathematics is not computationallyoriented and hence inappropriate for computationalscience.We are also exploring the possibilities of in-cluding aspects in high school mathematics and sci-ence. In this case, just simply asking the questionof how good the built-in trigonometric functions aremight be su�cient to keep a high school class busy allsemester. Simply taking away the student's calcula-tors and making them deal with the tables of values8This is the equivalent of a minor
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Crossroads August 16, 1993 12is a valuable exercise in error analysis and interpo-lation without high-powered mathematics being re-quired. For example, when asked for the value of �,the value most often given is 3:14. How good is thatvalue? The guidelines for development individualproblems are:1. The problems should be easy to grasp and capa-ble of full analysis.2. The solutions should be intuitive at the outsetso that the student can propose better solutionsas they understand more.3. The students should address several small prob-lems extensively rather than one or two large,complicated problems.4. The course should expose common failurescaused by commonly used techniques when ap-plied inappropriately.There is a large number of quite simple but impor-tant problems which fall into these guidelines. Forexample, one can trace the history of the computingof � from Archimedes to the current supercomputinge�orts which have recently been so widely touted. Inthe process, the students learn about series, acceler-ation methods, �nite di�erence algebra, limits, andcoding techniques not to mention a healthy dose ofround-o� error and conditioning analysis. All of thiscan be done with little or no reference to anythingabove an intuitive grasp of limits|or it can be donewith the most advanced concepts. The point is thatone can use this one problem across a broad spectrumof students|high school to Ph.D.When working actual physical problems, suchas we have done with our class, we have found thatthe following rules make life easier:1. The working groups must be small and multidis-ciplinary.2. The homework should emphasize graphic/visual-ization techniques over printing out and poringover lists of numbers.3. Course materials should emphasize literate ex-planations of the methods employed and the pro-grams written.The syllabus developed is being expanded and devel-oped into a series of teaching modules. When com-pleted, these modules will be available from the NorthCarolina Supercomputing Center9.9Contact Curtis Edge, Director of Education, North Car-olina Supercomputing Center, Research Triangle Park, NC,27709. e-mail: edge@ncsc.org

A particular aspect of programming needs tobe dealt with: the tendency to think of programs assomething beyond explanation. In our syllabus devel-opment work, we are employing literate programmingtechniques pioneered by D. E. Knuth[33]. We are us-ing the FWEB program written by John Krommes atPrinceton[23]. This approach has proven viable.4.1.3 The Graduate ProgramFor the graduate student who does not have a back-ground commensurate with the outline above, mostschools would be able to add su�cient courses to�ll the gap, assuming that the students a su�cientscience background. Clemson o�ers the usual fareof theoretical and applied courses of interest to thecomputational scientists. Some are advanced ar-chitectures, compiling, computability, computationalcomplexity, operating systems, and parallel and dis-tributed processing. These are|directly usable, sub-ject to the criticisms given earlier, as are many ofthe topics in software engineering, database manage-ment, and graphics.While many of the scienti�c questions posedby the Grand Challenges are not directly related tocomputer science research, some are: e.g., the HumanGenome project. The history of genome decodingas a coding theory/formal language problem is quitelong. Visualization, by its very nature, is tightly tiedto current graphics research.However, there are many topics which havebeen hinted at in this paper which perhaps need to beexplicated. We list three obvious and active areas ofcomputer science research which have direct applica-bility to computational science: foundational issues,software engineering, and programming languages.4.2 Research IssuesResearch topics for computer science in computa-tional science are many and varied. In this section,we touch on only the three most obvious. Firstly,there are several foundational issues; indeed, thereare several deep philosophical issues. Secondly, thereis the problem of developing software; we present acase that the current e�orts in software engineeringare not applicable to scienti�c software development.Finally, there are several issues about programminglanguages.We propose that the program for computerscience's contribution in the computational sciencesis the sound basis of programming scienti�c applica-tions and should concentrate on the issues below.
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Crossroads August 16, 1993 134.2.1 Foundational IssuesOne of the problems for computer scientists who arenot also mathematicians is the the role of mathemat-ics in computer science. For those not familiar withthe history of mathematics, Kline[21] is heartily rec-ommended, if not required, reading. The basic point,however, is that most computer scientists are intro-duced to formalistic mathematics and not construc-tive mathematics. The latter, with its emphasis onobjects is, much more likely to appeal to an algorith-mic view[1, 7, 17, 18, 22, 24, 28].There are many intriguing questions which areof the mathematical/computational nature. If wepick up on Bishop's program[9], we might say thatBishop did not go far enough for computational sci-ence purposes. While we can have large numbers ofdigits (say in a multiprecision package[3]), the num-bers are still �nite and bounded. We propose the fol-lowing program: to develop a sound theoretical basisfor deriving computer programs by taking the com-putational real formulation as the speci�cation. Sucha program would replace the \�nite but not a prioribounded" numbers of the computational reals by the\�nite and a priori bounded" numbers of the ma-chine. The development of a sound understandingof the number systems starts with Wilkinson[36, 37].The concept of the Wilkinson set �ts very nicely withthe ideas of denotational semantics[4, 6, 25, 29, 31].This development should be primarily algebraic innature, adding a level to the traditional algebraic hi-erarchy. The constructive programmight also shift inemphasis in development of numerical mathematics.For example, we can achieve some results by replac-ing limits with extrapolations. In this program, wemight well shed some light on the age-old questionof the semantics of a mathematical expression. Wemight propose that the semantics of the expressionis the appropriate numerical programs that computethe expression to a certain accuracy. Here, we use\appropriate" to mean \appropriate to the region ofthe parameter space under investigation." Seldomdoes one method su�ce for all possible subregions ofthe parameter space.The last foundational issue to touch on is thatof complexity. While asymptotic complexity con-tinues to be important for computer science, thereare other issues to address. Asymptotic analysis hasbeen mostly successful in delineating worst case per-formance. The comparisons are only valid for largeinputs, something meaningless in computational sci-ence. However, a more important criticism can beleveled: the current scheme does not address howfast the algorithms approach their asymptotic speeds.This criticism can also be leveled against the devel-

opment of numerical codes. New methods and ideasare available and should be explored[35, 10].4.2.2 Practical Development SupportWhile foundations have a place in supporting com-putational science, computer science can address is-sues in the development tools and techniques for theimplementation of models in the heterogeneous envi-ronment. In this section, we allude to some concretesuggestions for research. This material is a very shortversion of [34].Some areas, such as architecture, operat-ing systems, and graphics, have applications tocomputer science as well as computational science.We have alluded to the need for problem-solvingenvironments[15] that make use of areas such as com-putational geometry and arti�cial intelligence. Evenan area such as database management|which weassociate more with business systems than scien-ti�c systems|has important applications in manag-ing the large volume of data generated in many typesof scienti�c experiments. Two areas should receivespecial mention: software engineering and program-ming languages.The software engineering of scienti�c systemscan be quite di�erent from other kinds of systems.While the concerns are much the same, the methodmay be di�erent. Scienti�c models evolve over time;hence, the management of change assumes special im-portance. The role of the speci�cation is evolution-ary and based on analysis. It is also the case thatthe speci�cation is not open to negotiation. Testingassumes a di�erent dimension since it is often hardto determine what the \right answer" is.Programming languages are an important partof the development of computational science. We arenot just thinking of the eternal \Fortran versus C"discussion. The basis of design for most scienti�csystems is matrix-theoretic. Even problems that areonly in a single variable may employ matrices|it isimpossible to talk about quadrature without talkingabout \grids" and matrices. Primitives in compu-tational matrix algebra probably look more like theBLAS than one might conclude from a linear alge-bra text. There are also many special matrix shapeswhich need to be supported. With regards to arith-metic, there is the ongoing problem of dealing withinterrupts and the proper support for IEEE arith-metic.
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Crossroads August 16, 1993 145 SummaryComputational science is an emerging discipline o�er-ing opportunities for computer scientists. Computa-tional science is an interdisciplinary approach to ad-dressing the Grand Challenges, whose solutions aredeemed vital to the economic health of the UnitedStates. The opportunities for participation in com-putational science range from the traditional areasof computer science|such as language development,system design, and (non-numerical) algorithms|todecidedly new areas such as software engineering re-lated the the development and justi�cation of scien-ti�c programs.The excitement of computational science is inrenovating the scienti�c research paradigm. Thereare three goals:1. To �nd and eliminate unwarranted assumptionsand approximations in models;2. To correctly marry the appropriate algorithms tothe appropriate architecture given a model andits parameter space; and3. To deal with the complexity and veracity of theprogramming process.The computational science program proposes to de-velop a new approach to science by the principles:physical exactness, guaranteed computability, andbounded errors.The organizational paradigm is an integrated,interdisciplinary focus on applications-algorithms-architectures|that is, the focus is on solving a classof problems rather than generating new pieces whichmight be �t together into a solution.The goals for computational science coursesare:1. To create a healthy sense of what computationcan and cannot do with respect to scienti�c mod-els.2. To instill appreciation of the application-algorithm-architecture nature of computationalscience.3. To expose the students to the consequences ofnot following proper computational principles.The conduct of the courses re
ects the philos-ophy of the professors as well as the subjects them-selves. Our emphasis re
ects experiences gained inindustry: it is imperative that the students work ininterdisciplinary groups. It is important that thegroups understand that each member has a special
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