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Abstract

We describe computational science as an inter-
disciplinary approach to doing science on com-
puters. Our purpose is to introduce computa-
tional science as a legitimate interest of com-
puter scientists.

We present a foundation for computational sci-
ence based on the need to incorporate compu-
tation at the scientific level; ¢.e., computational
aspects must be considered when a model is for-
mulated. We next present some obstacles to
computer scientists’ participation in computa-
tional science, including a cultural bias in com-
Fi-

nally, we look at some areas of conventional

puter science that inhibits participation.

computer science and indicate areas of mu-
tual interest between computational science and
computer science.

Keywords: education, computational sci-

ence.

1 What is Computational Sci-
ence?

In December, 1991, the U. S. Congress passed the
High Performance Computing and Communications
Act, commonly known as the HPC'C'. This act fo-
cuses on several aspects of computing technology, but
two have received the most attention: (i) computa-
tional science as embodied in the Grand Challenges
(Table 1) and (i) the National Research and Educa-
tional Network (NREN). The NREN is to be a net-
work of extremely high speed, capable of transmit-
ting in the terabit per second range—approximately
ten times faster than we can currently transmit data.

The Grand Challenges are engineering and scientific
problems considered vital to the economic well-being
of the United States. Many of these problems, such as
drug design and global climate modeling, have world-
wide impact. The exact goals of the HPC(C' are pub-
lished in a pamphlet and updated yearly[14].

The science and engineering components of
the HPC(C' require an interdisciplinary approach to
solving very difficult problems.
quire the concerted actions of physical scientists, en-

The solutions re-

gineers, mathematical scientists, and computer scien-
tists. Computational science embraces this collabo-
rative effort among many diverse disciplines. FEven
in the final analysis, the “answer” may have to be
pieced together from the many viewpoints.

Our purpose is to ask whether today’s com-
puter scientists are able to take up the challenge of
computational science. Some might argue that com-
putational science is not an interest of computer sci-
ence; that current areas of interest comprise the total
domain. Indeed, it is strange that one has to argue
for scientific applications as a part of computer sci-
ence, since, after all, modern computing’s roots are
in scientific and engineering applications.

An exact definition of computational science
is open to debate. There are many programs in the

Astronomy

Human Genome Mapping
High 7. Semiconductors
Molecular Design of Drugs
Naval Architecture

Semiconductor Design
Structural Biology
Superconductivity
Underwater Acoustics
Weather, Climate,
and Global Change
Modeling

Quantum Chromodynamics Vision

Table 1: Grand Challenges
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United States and elsewhere that use the term and
each program probably has its own view of computa-
tional science. We outline the Clemson view to com-
putational science as one possible approach. That
view recognizes three components to computational
science: applications, algorithms, and architectures.
We visualize this as a pyramid supporting the sci-
ence and engineering. Applications need not be re-
stricted to the traditional science and engineering ap-
plications; for example, complex econometric models
can also benefit from computational science.

The conduct of computational science, in the
Clemson view, is interdisciplinary. This interdisci-
plinary thinking demands that the constituent disci-
plines (physical sciences, engineering, mathematics,
computer science) maintain their autonomy. Within
computational science, a computer scientist retains
her/his expertise in computer science, but empha-
sizes applications in science or engineering.

We argue that although computational science
is not for every computer scientist, computational sci-
ence is an idea whose time has come—again. Our
premises:

1. Computational science is addressing problems
that have important implications for humankind.
These problems are complex and their solutions
desirable.

2. Computational science is unlikely to succeed in
the near term without further advances in soft-
ware and hardware. Without computer science
involvement, the solutions to these problems will
take much more time.

3. Computer science is generally not participating
in science and engineering applications, nor is it
preparing students to do so in the future.

We present evidence for point 3 and we propose some
remedies. We hasten to add that all the constituent
disciplines may be in similar situations; see, for ex-
ample, comments adapted from Robert Pike in Com-
puting the Fulure[30, page 126]. We further point out
the obvious changes at the foundations of the scien-
tific method as evidence for these intra-disciplinary
changes.

In Section 2 we present the Clemson view of
computational science and describe the role of various
disciplines. This section primarily addresses issues in
the philosophies of science and of mathematics. Sec-
tion 3 presents partial evidence that computer science
1s not participating in, nor preparing students for,
computational science. Section 4 we propose some
actions that computer science can take to prepare for

computational science: both in education and in re-
search.

2 The Challenge of Computa-
tional Science

This section is primarily philosophical in nature. We
discuss four principal areas. The first area is the envi-
ronment of computational science, with emphasis on
the general method of investigation. The second area
focuses on methods, in which we outline our view of
modeling. The third area relates to the relationship
among the scientific application, algorithms, and the
architectures. Finally, there is a question of the ve-
racity of a computation.

This section is intended to address a broad-
based audience—computer scientists, primarily, but
physical scientists, engineers, and mathematicians as
well. We do not assume that the reader is currently
active in computational science.

2.1 The Environment of Computa-

tional Science

Computational science is an emerging discipline char-
acterized by the use of computers to provide detailed
insight into the behavior of complex physical systems.
Computational science uses computational methods
to conduct experiments which are either too expen-
sive or, in fact, impossible to conduct in the real
world. A simple perusal of the scientific literature
clearly shows that computer simulation is enormously
fruitful in most fields. The interplay of experiment,
traditional theory, and computational modeling has
strong, symbiotic results. The simulations can be
used to provide unique insight into physical processes.
In order to improve this capability, the full power of
computing technology must be available to the scien-
tist and engineer. There are many aspects to com-
puting technology and we emphasize that computa-
tional science is not synonymous with supercomput-
ing. Much scientific and engineering work takes place
on workstations; 1t is as important to have correct an-
swers from a workstation as from a supercomputer.
The proper subject of computational science is proper
modeling and correct computation.

The modern view of science recognizes an in-
terplay between theory and experiment. This view
was first presented in a polished form by Bacon in
the Novum Organum' in the 17th century. Indepen-

IThe Organum is Aristotle’s work on reasoning and the sci-
entific method. Bacon’s book is oriented towards changing the
attitudes of his day which Bacon attributed to slavish following
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dently, Kepler and Galileo emphasized mathemat-
ics as the language of science. These two thoughts
have been merged into the foundations of modern sci-
ence. Modern science and engineering arose through
the interplay of theory and experiment: theories are
proposed and the role of experiment is to sort the
theories out. Mathematics has not been a bone of
2. However, there are problems with dif-
ferences between some areas of classical mathematics
and mathematics needed for computation[21].

The standard model of scientific enquiry must
be altered to include computer models. A simplified
version of the new (proposed) process:

contention

1. A model M is derived from physical or engineer-
ing principles. M may contain submodels previ-
ously developed.

2. M is further developed using numerical tech-
niques into perhaps many computational models

Ci.

3. The computational models C; serve as a basis
for experiments, using visualization techniques
or perhaps automated tools, to explore and val-
idate the model M. Experiments or data from
real examples of the system are processed as the
modeler attempts to validate the model M.

4. At some point, the computational models C; pro-
vide insights into the physical behavior of the
system under study. M will continue develop-
ment through refinement based on the results of
these computational experiments.

In our view, computational aspects must be
considered during model formulation. The computer
is too often seen as capable of very fast computation,
but rarely are finite arithmetic, numerical algorithms,
architecture, and program construction taken into ac-
count in scientific formulations. The scientist or engi-
neer who avoids these considerations is at a grave dis-
advantage. In the same way that sloppy experimental
technique cannot be tolerated, so too the inappropri-
ate marrying of applications, algorithms, and archi-
tectures cannot be tolerated in computer modeling.
It is important to realize that computer technology
can be applied inappropriately. On the positive side,
the computer allows scientists and engineers to have
unprecedented control over their models.

The computer now allows the use of non-linear
methods where non-physical assumptions were re-
quired before (see Section 2.2). A simple example

of Aristotle. Science in the 17th century was oriented towards
“reasoning” but not “experimental verification.”
?Except for some areas like quantum logic. See [5].

in every sophomore physics book is the pendulum: if
we do not make the “small angle assumption”, the
resultant differential equation usually makes use of
elliptic functions for its solution. Instead of having
a nice analytic function to investigate, we must in-
stead run many “numerical experiments” before we
can understand the behavior of the pendulum. Such
experiments must be carefully performed and docu-
mented and are always subject to both computer and
human error. Thus, computation becomes part of the
philosophy of science.

Technical innovation is not without its conse-
quences for the computational scientist. Computa-
tional power is often not accessible due to the exotic
nature of some of the newer architectures (e.g., hy-
percubes) or the admitted difficulty of programming
and debugging the models. Older, validated mod-
els often are difficult to port to the newer architec-
tures. Algorithms that work on one architecture are
often inappropriate on another. Looking to the fu-
ture, we see even more exotic hardware that must
be integrated into an already complex environment.
Heterogeneous computing environments are currently
available to large corporations and national labora-
tories. Computational science 1s thus involved in de-
livering technology, directly to the scientist and engi-
neer, while at the same time actually enhancing fun-
damental scientific models.

Computational science focuses upon with the
development of computationally feasible models for
physical systems, developing algorithms for solving
issues arising in the modeling process, and matching
algorithms to computer architectures. This should
be accomplished in an environment that frees the
scientist and engineer from the confines of low-level
programming.
1s to provide the scientist tools and computational
environments which allows fruitful exploitation of
available resources without having to resort to non-

The role of computational science

physical approximations simply to reduce the model
to mathematically tractable form. Scientists should
not have to be concerned that the computing engine
is scalar, vector, and/or parallel with shared or dis-
tributed memory. Rather, with an appropriate envi-
ronment in which to describe the model and to specify
the spatial configuration and interactions, the details
of the solution within a class of algorithms should be
rather transparent. The lack of a cohesive program-
ming model 18 perhaps the biggest obstacle to com-
putational science. Who better to address this lack
of a programming model than computer science?
Our view of “computational science” empha-
sizes interdisciplinary involvement in the scientific
process. The Clemson Program has three goals:
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Goal 1. To find and eliminate unwarranted as-
sumptions and approximations in models;

Goal 2. To correctly marry the appropriate al-
gorithms to the appropriate architectures given
a model and its parameter space; and

Goal 3. To deal with the complexity and veracity
of the programming process.

The primary impact of computational science will be
the development of a new view of science. In order to
understand the role of this proposal in the develop-
ment of computational science, we describe our vision
of how computational science will evolve. Sections 2.2
through 2.4 address these goals.

2.2 New Foundations—the New

Novum Organum

Computational science places science and engineering
first and makes sound scientific modeling the basis.
The model reflects the scientist’s or engineer’s under-
standing of the physical system. Almost inevitably,
the models incorporate assumptions about how a sys-
tem operates. These physical assumptions require the
use of mathematical approximations. Such assump-
tions we call physical since they are open to validation
procedures within the science. A model with only
physical assumptions we call (physically) exact. By
contrast, assumptions introduced into the model for
mathematical convenience lead to a physically inexact
model; such assumptions we term non-physical.
“Classically derived” models are rarely phys-
ically exact. That 1s, such models include non-
physical assumptions needed to produce closed-
form solutions. = We contend that such models
are mathematically exact but physically approrimate.
One is therefore left with a nearly exact solution
of approximated—and perhaps unrealistic—models.
We discuss an example below. Anecdotal evidence
shows that often these models may give unsatisfac-
tory results when used in a computational setting.
An alternative is to reformulate the models to be
more physically exact and therefore more realistic.
Unfortunately, these newer models have no closed
form and generally are very hard to solve numerically.
The lines between physically exact and inex-
act may be blurred, but the distinction is useful. For
example, consider the model of a pendulum such as
one might find in an undergraduate physics book[16].
Figure 1 shows a diagram of a simple pendulum.
There is a point mass m at the end of a rigid, mass-
less bar of length L. The pendulum swings in an arc
measured by the angle 8. At 6, the restoring force

_mg

Figure 1: Pendulum Diagram.

1s —mgsin @, ignoring friction. In this model, the
assumptions “point mass”, “massless bar”, and “fric-
tionless” are physical assumptions since they may be
validated. The equations of motion are given by

d?0

mL— = —mgsinf.

d? @

This differential equation does not have an ana-
lytic solution ( although it does have an elliptic
solution[12]).

The next assumption is non-physical: since for
small 8, sinf =~ 6, we can rewrite the equation of

motion to )

mLW = —mygh. (2)
This latter equation is solvable by analytic methods,
leading to the well-known sinusoidal solution. Actu-
ally, the assumption that sin @ =~ 6 is not, in itself, all
that bad as long as we stay in the region for which
that assumption is true. However, “small” is a diffi-
cult quantity to determine. For example, if the small-
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est relative error of perception of an angle is 107° ra-
dians, the maximum angle would be about 2 x 1072
radians; that would make the maximum swing of a
twenty foot chain about four inches. Galileo might
not have even seen such a pendulum move.

Tt is important to note that the solution to (2)
lets one talk about all sorts of silly things. For ex-
ample, in this linearized pendulum, one can “wind
up” the pendulum, say to 4r (two times around) and
the equations of motion will “unwind” between —4sr
and 47. No real pendulum® does this and hence
we would call the model non-physical. Therefore,
there is an important distinction between physical
and non-physical models. In our terminology, we
would say that Equation (2) is “physically approx-
imate but mathematically exact” while Equation (1)
is more “physically exact but mathematically approx-
imate”. It is mathematically approximate because
elliptic integrals are solvable only by computation of
series[12].

Since we see computational science as an in-
terdisciplinary endeavor, there is a need to merge
the methods and viewpoints from the individual dis-
ciplines involved. Under the current methodolo-
gies of science; mathematics plays a role as a tool.
For the outsider, certain questions about the ba-
sis of mathematics are ignored[21]. The most im-
portant question for the present discussion is the
question of computability. Ordinary calculus, as
taught to freshmen and sophomores, assumes cer-
tain things about existence, leading to impredicative
assumptions that are inherently non-computational
in nature[21]. The reliance on computation in com-
putational science opens a very important question:
How much of ordinary mathematics 1s usable in
the computational world? This question has been
addressed[9, 11, 18, 22, 24 28, 27] but the results are
not generally practiced. As an illustration as to why
this question is important, take the recent “discov-
ery” of chaos. Chaos came to light from computa-
tional solutions to problems, but one must be sure
that chaos is a physical artifact and not a computa-
tional one. Some models were known, such as the
logistics equation, which were chaotic but it was not
until the computer got involved was this attribute
seen.

The Clemson Program proposes that modeling
proceed by the following principles:

e Physical Eractness. We strive to identify non-
physical (mathematically convenient) assump-
tions and eliminate them.

o Computability. We  must  identify

3In fact, the “pendulum” is now a torsional spring.

non-computable? relationships. No mathemati-
cal relationship is exact unless it follows directly
from the development of an exact model and is
computable. In this sense, most mathematical
relationships turn out to be approrimate.

e Bounded Errors. No formulation is acceptable
without a priori error estimates or a posteriori
error results. Because the computation is ap-
proximate, we must be able to tell “how good”
the answers are.

These new models must meet the computational sci-
ence criteria of no unwarranted approximations and
suitability for solution on state-of-the-art computers.
We emphasize the rederivation of models for their
exactness to physical principles. This should not be
taken to mean that we consider only computer solu-
tions to these models.

To complete this subsection, consider our pen-
dulum example in light of the paradigm of science
given earlier. The model M is that of the non-linear
pendulum of Figure 1. Two computational models
come to mind: C; as the numerical solution of the
elliptic integral or C» as a numerical solution to the
differential equation defined by Equation (1). In ei-
ther case, ¢ and L are parameters. We would have
to explore the behavior of the pendulum by “solving”
the equations repeatedly for different values the pa-
rameters. Each run of the computational models is
an experiment.

2.3 Applications, Algorithms, and Ar-
chitectures.

Assuming that models have been properly formulated
does not guarantee that the appropriate numerical
method(s) or the optimal choice of architecture are
chosen for the computational models. Architectural
advances have made new and specialized machines
available. The scientific computer center of the fu-
ture will have a network of diverse machines. Com-
pilers and operating systems will have the difficult
task of managing these dispatchable machines. The
scientists and engineers will want to use these ad-
vanced architectures, but the task of knowing what
machines are suitable for which algorithms and data
ranges will become mind-boggling. If one makes sci-
entists deal with the intricacies of distributed pro-
cessing, 1t is more likely that productivity will likely
go down rather than up.

The optimal algorithms for these as-yet un-
known systems are most likely not the ones that are

4Impredicative relations the basis of

non-computability.[21].

are
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optimal on a von Neumann architecture. Our experi-
ence with distributed algorithms for hypercubes, for
example, would indicate that the old algorithms will
not suffice for the new architectures. The problems of
designing, documenting, debugging, and supporting
a large library of scientific routines have been hinted
at in the literature. There is also a problem with an
exploding number of versions: often differing only in
architectural details. For example, consider the de-
velopment of the so-called Level 3 BLAS[13]. When
LINPACK was originally conceived, the only model of
computation was the von Neumann model. The Basic
Linear Algebra Subprograms—BLAS as they came
to be known—were motivated by vector operations.
The BLAS, which were originally considered abso-
lutely primitive, have been redesigned several times
as , first, vector processors and, then, distributed pro-
cessors became available. Designing and tuning such
a project as LINPACK, or its follow-on LAPACK][32],
for a large number of incompatible architectures will
be daunting, to say the least.

LINPACK also points out the difference be-
tween mathematics as practiced by the computation-
alist and the non-computationalist. For the formal
mathematician, it is enough to know that one can in-
vert a matrix using something like Gaussian elimina-
tion. That algorithm is probably familiar to any un-
dergraduate in science (including computer science)
and engineering. Gaussian elimination, however, may
not be the best way to compute the inverse on a com-
puter. LAPACK, in fact, has found that certain com-
puters had to be excluded from consideration if opti-
mal error characteristics were to be obtained for the
remaining architectures.

2.4 Development and Verifi-
cation Support for Computational
Science

The modeling environment will provide for visualiza-
tion of results and tools for developing models in the
computational science paradigm.

One major goal must be to extend the concept
of model derivation to include the numerical and pro-
gramming aspects. Programming must be considered
an integral part of the modeling process. The scien-
tist must believe and be able to verify that the output
of the computer model faithfully reflects the intended
model. Too often, the programming aspect is con-
sidered as an independent activity separate from the
rigorous rules of science and mathematics. For a dis-
cussion of these areas, see [15].

3 Is Computer Science Out of
Step?

In this section, we focus on computer science and its
place in computational science. At first blush, one
would think that computer science is well-positioned
to make important contributions to computational
science. Certainly computer scientists have the ex-
posure to programming and current architectures.
Surely we should be able to take the specifications
of a model and turn it into code. How hard can that
be?

The reality, however, is quite the opposite. For
example, in a recent workshop, the following problem
specification was presented:

Take a string and tie it around the equator
of the (spherical) Earth. Add [ feet to the
string. How high a tower must be built to
pull the string taut? Find the answer to
the best precision you can and defend the
number of digits you claim to have found.

The algebraic solution, which uses college algebra and
trigonometry concepts, can be found very quickly and
is shown in Figure 2. The answer requires solving
an implicit trigonometric equation and then solving
a quadratic equation. The symbolic system is one
form of the answer; it is perfectly acceptable until
the contractor asks how much steel she should order.

Computing the numbers is very difficult due
to the relative sizes of [ and R. The solution is made
difficult by several cancellations in the computations
which must be removed in order to obtain the desired
accuracy. It turns out that one can get about 21 dig-
its of accuracy out of 28 digits of precision on a Cray®.
To find these 21 digits takes a significant amount of
work, involving many test programs and a good bit
of experimentation and testing. The naive solution
coded in double precision does not work well. This
type of exercise is very common in computational sci-
ence. Are computer science students prepared to deal
with such problems? Certainly they should be if they
expect to participate in computational science.

There are some computer scientists who say
that computational science is a subdiscipline of com-
puter science. There are more radical computational
scientists who have suggested that computer science
should be abolished. Both extremes seem to miss
the mark. We argue that computer science is not
currently well-positioned to take on the challenges of
computational science due to own attitudes toward

5We have since done better.
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easily see computer science as devoid of meaning and
programming devoid of empirical import. We teach
“problem solving” devoid of problems: little “sound
bites” of ideas without a cohesive whole. Artificial
intelligence seeks to emulate human intelligence by
formal token systems devoid of meaning. We develop
a theory of computational complexity that deals with
asymptotic behaviors in regimes far beyond what al-
gorithms are called upon to support in practice.

All around us the ground rules are changing.
Computer scientists are ill-prepared to critically an-
alyze their own positions. They cannot determine
what is new and what is old; what has worked and
what has not; and why. That does not exempt us,
however; from improving our foundations. There
should indeed be a philosophy of computer science

Let I be the added length and R denote the radius of that addresses the questions of the various positions

the “perfectly round” Earth. Then
R?* 4+ 2% = (R+ h)*
z = Rtan$

l
6 —tanf+ — =0
anl+op

Figure 2: The World on a String.

engineering and science and the attitudes transmit-
ted to their students. But we also contend that there
is much computer science to be done in computa-
tional science and some computer scientists would do
well to seek out these opportunities. Let us begin by
outlining some reasons why computer science out of
step with computational science.

3.1 Lack of Foundations

In any mature discipline, there is a basic set of princi-
ples. These principles are the “rules of the game” that
can be called the philosophy of that science. These
principles are known by the workers in the field, if
only informally. Section 2.2 sets out a possible phi-
losophy for computational science. For example, the
“scientific method”[20] arises from the combined ex-
perience and criticism of scientists: how they work,
what they will accept as good work and what they
reject. Interestingly enough, there may be several
philosophies in use at any given time.

What, then, 1s a philosophy of computer sci-
Where is the critical analysis of methods?
Where do we see the skeptical, reasoned approach
to the discipline? Computer science stands in dan-
ger of falling into the “meaning” trap. Students can

ence?

taken on various issues. Our students should be made
to understand what is opinion and what is empirical
fact and what the “rules of the game” are. In the sci-
ences, engineering and mathematics there are rules of
the game and these rules must be followed. More im-
portantly, we must be able to explain to others what
we stand for. Here are some areas that need further
exploration that are of direct interest to computa-
tional science:

Basic Questions. The philosophies of math-
ematics and science explore two issues: (i)
what objects exist (metaphysics) and (i)
how do we come to know about these objects
(epistemology). Algorithms would seem to
be one of computer science’s objects, yet
textbooks—and the field as well—continue
to eschew definitions of algorithms. What
is computational knowledge and how do we
achieve 1t7

What 1s the literature of com-
puter science? Programs? Algorithms?
Journal articles? If it is programs, are these
programs to run on all possible machines?
And what are the requirements for verac-
ity? Should a program in a journal article
be expected to run as is?

Literature.

Formal Methods of Program Specifications.
Should not a program be proven to work
and have the behavior described formally?
When are formal methods appropriate? Are
they required to be validated in the sense of
a physical model? What is the empirical im-
port of formalisms? How do formal methods
(a formalism) convey meaning (an empirical
concept)?
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Numerical computation. Numerical pro-
cesses and floating point applications are
virtually ignored in the current program-
ming, compiler, and data structure texts.
When addressed, these issues are addressed
without application and without any con-
cept of correctness.

Another pervasive foundational problem is the
lack of scientific rigor. Most basic to science is a
consensual vocabulary and notation. Science and
mathematics have struggled ever since Kepler to de-
velop just such a vocabulary. In computer science,
though, we have a hodge-podge of definitions with
no agreed upon foundation. No wonder the scien-
tists and mathematicians are frustrated when work-
ing with computer scientists. Likewise, computer sci-
entists are mystified by the strict notational and defi-
nitional framework of the sciences as well as the harsh
requirements for proof.

3.2 Lack of Integration of Science and
Mathematics

The current ACM, CSAB and IEEE recommenda-
tions for the computer science curriculum include a
significant exposure to the sciences and mathemat-
ics. The Clemson curriculum for a B. S. in computer
science 1s probably typical:

1. One year of calculus—but no multivariate calcu-
lus and no differential equations.

2. One semester each of discrete mathematics,
6 »

statistics, linear algebra and “decision science®.
3. One year of natural science—usually biology or
chemistry.

4. One year of physics.

Most of these courses are completed early in the train-
ing of the computer scientist. What is missing? For
one thing, numerical analysis is conspicuously absent!
The contents of these courses are rarely used in com-
puter science courses! On the one hand, we might ar-
gue because these things have no apparent relevance
to computer science, we should not waste our stu-
dents’ time.

However, even within the current curriculum
there are problems. Checking my bookshelf for texts
used in the data structures-algorithm courses, I find
not one of the five uses the word “optimal”; it does
not appear in the index of any of the five. I then
looked for the word “average”. Two did not use the

6Statistics, probability, linear programming.

term at all. Two have a subsection on average case
analysis. One actually did some derivations. None
suggested any empirical validation. The concept of
optimal is central to many scientific and engineering
disciplines.

As another example, I computed the amount
of scientific and engineering literature indexed in
“ACM Guide to Computing Literature”[2]. There
were 377 pages used to list the literature by CR cat-
egory. Only 17 pages (about 4.5 percent) was needed
for the J.2 Physical Sciences and Engineering cate-
gory but 35 pages were devoted to “information pro-
cessing” applications. Also interesting is the fact that
only two pages were devoted to numerical linear al-
gebra. Why is so much attention paid to business
applications? And why so little attention paid to en-
gineering and scientific applications?

We would argue the following: we should
use scientific, engineering and mathematical con-
texts precisely because such contexts represent nat-
ural subject areas that the student already under-
stands. After all, we live in a physical world. For
example:

e A natural—and perhaps the simplest—way to
approach parallelism is through simple numer-
ical models. Nature is inherently parallel and
most students have personally experienced the
phenomena which are being modeled.

e Natural questions of correctness of computation
are usually evident in simple numerical prob-
lems.

e The vagaries of finiteness can be easily demon-
strated in small, easy to understand programs.

e The validation of computer models gives empir-
ical import to programs and is a natural devel-
opment ground for software testing concepts.

e Simulations of physical systems are far easier
to justify and explain than simulations of non-
physical systems.

e Some algorithms—simulated annealing and ge-
netic algorithms, for example—are derived from
physical principles. If the underlying physics or
biology is understood, the algorithm is under-
stood intuitively.

3.3 Lack of Emphasis by Faculty

The above points could be easily overcome if faculty
put emphasis on the use of scientific principles and
proper mathematics. But how many times have we

www.manaraa.com



Crossroads August 16, 1993

sloughed off a difficult mathematical point as “use-
less” when it really is “too hard” to teach or because
it is hard to understand? The message is clear to
the student: science and mathematics are neither in-
teresting nor important or just too hard. More fun-
damental, difficult details can be sloughed off as in-
significant, leading the students into a false sense of
security. If you ignore the hard parts, they cannot
hurt you.

With the possible exception of visualization,
computer science has been at odds with science and
engineering interests. While there are occasional calls
for “more mathematics” in the computer science cur-
ricula, there are just as many who lament the in-
clusion of mathematics. Really, now: what is the
relationship of mathematics and computer science?
Perhaps we would like it to be that “Real computer
scientists don’t do math—or databases, either.”

There does seems to be bad blood between
the groups. We have all heard pronouncements on
the programming language issue. At a recent con-
ference, the author participated on a panel on com-
putational science. One computer scientist put out
the suggestion that Fortran should be abolished—
without regard to the fact that the community has
many well-tested, well-understood programs in For-
tran, and that most scientists and engineers program
only in Fortran. The argument was that programs
in this newer language would be, oh, so much bet-
ter because of the work in vectorizing. The scientists
counter—and I am afraid that we are not hearing
this argument well[26]— is that those old, empirically
validated programs are the purpose of programming.
Calculating the wrong answer quickly is not any help.
Programs are not the object of science, knowledge is.
Those old, antiquated programs are well-tested and
jive with the empirical relations observed in the real
world. We, computer science, are forgetting the Ham-
ming dictum[19]:

The purpose of programming is insight, not
numbers.

The language debate, if indeed it is a debate, just
will not go away. But are we asking the right
questions[26]? If we continue with an attitude[26]
that the world is waiting with bated breath for the
next program—or programming language—we will
not endure as a discipline. If we continue imbuing
our students with this attitude, we will continue to
see dechining enrollments as the sciences and engi-
neering disciplines draw the best and the brightest.
We also run the risk that the application disciplines
will alter their own curricula to embrace the useful
parts of computer science.

3.4 The Results

The result of these and other factors is that computer
science (or even perhaps computer engineering) stu-
dents do not understand science and are ill-equipped
to deal with scientific and engineering software. How-
ever, computer science students are not irretrievably
lost to science. The author has been involved along
with mathematics and physics faculty in developing
courses for computational science. We have had a
broad mix of students, including computer science,
mathematical science, physics and engineering stu-
dents, who have taken the courses. The computer
science students, after being given the instruction
needed to make up their prerequisite deficits, per-
form very well. Since they already understand pro-
gramming, they can concentrate on the algorithms.
The non-computer science students find program-
ming hard and often rely on the computer scientists
to deal with algorithm complexities. The students
in this class respond enthusiastically when presented
hard problems involving higher mathematics. One
student, who is a co-op student, summed it up best:
“I’'m not sure I’d like to do this for a living, but it’s
been the most realistic use of my training.”
Computer science is not the only loser: sci-
entific and engineering codes are being written using
inappropriate, ineffective, and inefficient algorithms
because the scientists and engineers are forced to “go
it alone.” The experience of computational science
teams, in theory and in practice, 1s that no one has
to go it alone and that everyone benefits from the
interdisciplinary team approach. The problems fac-
ing science and engineering are no longer solved by a
single person but by a team. The nature of compu-
tational science is inherently interdisciplinary.

4 Where Should Computer Sci-
ence Put Its Effort?

Computational science is an interdisciplinary area
and thus does not properly contain any one of its sub-
disciplines; we do not think of it as an independent
discipline. All the constituent disciplines must make
adjustments and concentrate efforts. There are sev-
eral different areas wherein computer science can put
out effort, at the K-12level as well as the undergradu-
ate and graduate level. We argue below that the high
school student is well-equipped to enter the computa-
tional science pipeline. At the graduate level, we can
offer programs of study which familiarize the students
with scientific and engineering problems and their
computational solution. Finally, there are research
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programs which advance both computer science and
computational science.

4.1 Education

Ultimately, we see the academic involvement in com-
putational science as spanning high school, under-
graduate and graduate studies. Research programs
by computational scientists will continue to absorb
the well-trained researcher for many years to come.
There is an immediate problem of publicizing the
Grand Challenges and justifying to high school and
undergraduate students the excitement and impor-
tance of these and other problems. This can most
fruitfully be done by developing a sense of curiosity in
the physical world and an appreciation of mathemat-
ical and computer modeling. This perhaps includes
changing some cherished teaching modules along the
line. We must develop in the students a curiosity
relating to observations of what can and cannot be
done with the computer. As has been seen in compe-
titions such as SuperQuest at Cornell University and
other state programs”, high school students respond
enthusiastically to real problems in science or engi-
neering. Even video games, with their goal of real-
ism, make use of physical principles. Movies, such as
Star Wars, use enormous amounts of supercomputing
time to generate their effects. How many computer
science graduates are able to step into any of these
endeavors?

Currently, there are too few trained computa-
tional scientists to form a critical mass on any one
problem. We need to provide a program that serves
the secondary school student as well as the post-
doctoral fellow. It is necessary to increase interest
in numerical analysis, scientific software engineering,
languages, algorithms and architectures as disciplines
and as requisite knowledge of all computational sci-
entists. Under the current situation, the expertise
for computational science comes from the constituent
disciplines.

4.1.1 Goals

The major educational goals of computational science
at all levels are

1. To appreciate the role of computation in science
and to stimulate interest in computational sci-

"There are several state programs. One is put on by the
North Carolina Supercomputing Center at Research Triangle.
The program involves high school students from around the
state in a problem chosen by the students that uses supercom-
puting in the solution. Several other states—e.g., Alabama
and New Mexico—have similar programs. Clemson is inaugu-
rating a program for South Carolina.

10

ence.

2. To create a healthy sense of what computation
can and cannot do with respect to scientific mod-
els.

3. To instill understanding of the application-algo-
rithm-architecture nature of computational sci-
ence.

4. To expose the students to the consequences of
not following proper computational practices.
the correct ones.

The objective is to develop a cohesive, comprehensive
foundation for dealing with numerical methods and
software. We must also be careful not to identify com-
putational science as the traditional numerical analy-
sis course. Numerical textbooks are largely indepen-
dent of applications, counter to the computational
science viewpoint. Too often, students are not intro-
duced to pathologies in computation until they are
out of school and the results count for real. It is also
true that we do not hold scientific programs to the
same rigorous standard that the rest of science must
meet. This latter situation is unacceptable. Such
rigorous standards would be called—at first blush—
software engineering of scientific software to differ-
entiate it from software engineering in its more usual
setting.

4.1.2 High School and Undergraduate Pro-
grams

We need a comprehensive curriculum in computa-
tional science. Our view is that there need not be a
separate administrative unit to develop a viable cur-
riculum. Our initial curriculum is below.

1. Each scientific or engineering department which
is participating in the computational science pro-
gram would make available a course with the ap-
proximate title, “Computational Models in X.”
The purpose of these courses is to give the stu-
dents as wide a spectrum of subjects as possible
to choose from.

2. Mathematics requirements are kept to a mini-
mum. At the high school level, one can deal
very effectively at the intuitive level. Signifi-
cant problems can be dealt with using only pre-
computer concepts such as elementary finite dif-
ference techniques.

3. Most of the disciplines at the undergradate level
already have significant exposure to mathemat-
ical science courses. For numerical work, how-
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ever, there are three basic requirements: (i) se-
quences, convergence, and error; (ii) differential
equations; and (iii) linear algebra.

4. Computational requirements are likewise part of
most technical subject areas. There are four sub-
ject areas that should be studied:

(a) data structures specifically oriented to-
wards the problems in computational sci-
ence. We have developed a list of some sixty
specialized structures.

design of graphical user interfaces. This in-
cludes graphics, human-computer interac-
tion, and even compiler design.

introduction to computability theory, em-
phasizing recursion and recursive functions,
to understand what is computable and how
to think about computation.

(d) software engineering of scientific software.

5. Two computational science modeling courses:
one emphasizing techniques for discrete models
and one emphasizing continuous models.

These courses must be developed around modules
which emphasize the interaction of the applica-
tion (problem); the analysis of numerical and non-
numerical algorithms; and the appropriateness of the
architecture(s) available. This can be done by orga-
nizing around three units.

1. The first unit introduces a problem and should
be discussed by someone in the relevant field.

2. The second discusses possible solution tech-
niques. Various approaches should be tested in
their order of intuitive appeal.

3. The third unit—given after the students have
programmed and studied their solutions—
discusses the teaching points. Each unit is ac-
companied by written material. The students
will prepare a report—much like a laboratory
report—on their solutions and observations.

The core problem for most computer science
curricula is the lack of mathematics—most notably,
the lack of differential equations and a solid linear
algebra course. Most curricula now have positive in-
volvement and reinforcement in the traditional sci-
physics or chemistry. Since there is not a
mandated curriculum in computer science, one needs
to work within the framework of the C'SAB checklist
and the proposed ACM-IEEE proposal. For exam-
ple, the Clemson program is accredited by CSAB and

ences:
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the needed changes can be accomplished within the
current BS curriculum: the student takes a math-
ematical science or numerical analysis applications
emphasis® and two senior-level modeling courses.

We have tested this concept through a spe-
cial topics course which included seniors and post-
graduates. The course we taught had engineer-
ing, physics, mathematics, and computer science stu-
dents. In some cases, the problem presented was a
word problem form to make the problem focused. In
other cases, we have taken a problem directly from
the experience of the student or some important prob-
lem from the application-oriented students. The trick
1s to make the problem easily understood.

Contrary to the opinion of some, many stu-
dents react very favorably to hard problems that are
presented in an intuitive way. Also contrary to opin-
ion, many students can deal with higher-level mathe-
matical concepts, particularly when developed in the
context of a real problem. In a tightly controlled
classroom situation, students can explore issues in:

1. Floating point arithmetic

2. Numerical error and conditioning

3. Functional approximation and interpolation
4. Linear and non-linear differential equations
5. Quadrature

6. Optimization

7. Experimental data techniques

8. Tables and interpolation

It is worth pointing out that traditional undergradu-
ate mathematics courses are open to much criticism
because the courses are taught with an emphasis on
formulas and theorems but independent of meaning.
The richness of calculus, for example, 1s in its appli-
cations. Even with the current reform underway in
undergraduate mathematics, we are unlikely to see
Bishop’s criticisms[8] answered. The upshot is that
undergraduate mathematics is not computationally
oriented and hence inappropriate for computational
science.

We are also exploring the possibilities of in-
cluding aspects in high school mathematics and sci-
ence. In this case, just simply asking the question
of how good the built-in trigonometric functions are
might be sufficient to keep a high school class busy all
semester. Simply taking away the student’s calcula-
tors and making them deal with the tables of values

8This is the equivalent of a minor
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is a valuable exercise in error analysis and interpo-
lation without high-powered mathematics being re-
quired. For example, when asked for the value of ,
the value most often given is 3.14. How good is that
value?

The guidelines for development individual
problems are:

1. The problems should be easy to grasp and capa-
ble of full analysis.

2. The solutions should be intuitive at the outset
so that the student can propose better solutions
as they understand more.

3. The students should address several small prob-
lems extensively rather than one or two large,
complicated problems.

4. The course should expose common failures
caused by commonly used techniques when ap-
plied inappropriately.

There is a large number of quite simple but impor-
tant problems which fall into these guidelines. For
example, one can trace the history of the computing
of m from Archimedes to the current supercomputing
efforts which have recently been so widely touted. In
the process, the students learn about series, acceler-
ation methods, finite difference algebra, limits, and
coding techniques not to mention a healthy dose of
round-off error and conditioning analysis. All of this
can be done with little or no reference to anything
above an intuitive grasp of limits—or it can be done
with the most advanced concepts. The point 1s that
one can use this one problem across a broad spectrum
of students—high school to Ph.D.

When working actual physical problems, such
as we have done with our class, we have found that
the following rules make life easier:

1. The working groups must be small and multidis-
ciplinary.

2. The homework should emphasize graphic/visual-
ization techniques over printing out and poring
over lists of numbers.

3. Course materials should emphasize literate ex-
planations of the methods employed and the pro-
grams written.

The syllabus developed is being expanded and devel-
oped into a series of teaching modules. When com-
pleted, these modules will be available from the North
Carolina Supercomputing Center®.

9Contact Curtis Edge, Director of Education, North Car-
olina Supercomputing Center, Research Triangle Park, NC,
27709. e-mail: edge@ncsc.org
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A particular aspect of programming needs to
be dealt with: the tendency to think of programs as
something beyond explanation. In our syllabus devel-
opment work, we are employing literate programming
techniques pioneered by D. E. Knuth[33]. We are us-
ing the FWEB program written by John Krommes at
Princeton[23]. This approach has proven viable.

4.1.3 The Graduate Program

For the graduate student who does not have a back-
ground commensurate with the outline above, most
schools would be able to add sufficient courses to
fill the gap, assuming that the students a sufficient
science background. Clemson offers the usual fare
of theoretical and applied courses of interest to the
computational scientists. Some are advanced ar-
chitectures, compiling, computability, computational
complexity, operating systems, and parallel and dis-
tributed processing. These are—directly usable, sub-
ject to the criticisms given earlier, as are many of
the topics in software engineering, database manage-
ment, and graphics.

While many of the scientific questions posed
by the Grand Challenges are not directly related to
computer science research, some are: e.g., the Human
Genome project. The history of genome decoding
as a coding theory /formal language problem is quite
long. Visualization, by its very nature, is tightly tied
to current graphics research.

However, there are many topics which have
been hinted at in this paper which perhaps need to be
explicated. We list three obvious and active areas of
computer science research which have direct applica-
bility to computational science: foundational issues,
software engineering, and programming languages.

4.2 Research Issues

Research topics for computer science in computa-
tional science are many and varied. In this section,
we touch on only the three most obvious. Firstly,
there are several foundational issues; indeed, there
are several deep philosophical issues. Secondly, there
is the problem of developing software; we present a
case that the current efforts in software engineering
are not applicable to scientific software development.
Finally, there are several issues about programming
languages.

We propose that the program for computer
science’s contribution in the computational sciences
is the sound basis of programming scientific applica-
tions and should concentrate on the issues below.
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4.2.1 Foundational Issues

One of the problems for computer scientists who are
not also mathematicians is the the role of mathemat-
ics in computer science. For those not familiar with
the history of mathematics, Kline[21] is heartily rec-
ommended, if not required, reading. The basic point,
however, is that most computer scientists are intro-
duced to formalistic mathematics and not construc-
tive mathematics. The latter, with its emphasis on
objects is, much more likely to appeal to an algorith-
mic view[l, 7, 17, 18, 22, 24, 28].

There are many intriguing questions which are
of the mathematical/computational nature. If we
pick up on Bishop’s program[9], we might say that
Bishop did not go far enough for computational sci-
ence purposes. While we can have large numbers of
digits (say in a multiprecision package[3]), the num-
bers are still finite and bounded. We propose the fol-
lowing program: to develop a sound theoretical basis
for deriving computer programs by taking the com-
putational real formulation as the specification. Such
a program would replace the “finite but not a prior:
bounded” numbers of the computational reals by the
“finite and a priori bounded” numbers of the ma-
chine. The development of a sound understanding
of the number systems starts with Wilkinson[36, 37].
The concept of the Wilkinson set fits very nicely with
the ideas of denotational semantics[4, 6, 25, 29, 31].
This development should be primarily algebraic in
nature, adding a level to the traditional algebraic hi-
erarchy. The constructive program might also shift in
emphasis in development of numerical mathematics.
For example, we can achieve some results by replac-
ing limits with extrapolations. In this program, we
might well shed some light on the age-old question
of the semantics of a mathematical expression. We
might propose that the semantics of the expression
is the appropriate numerical programs that compute
the expression to a certain accuracy. Here, we use
“appropriate” to mean “appropriate to the region of
the parameter space under investigation.” Seldom
does one method suffice for all possible subregions of
the parameter space.

The last foundational issue to touch on is that
of complexity. While asymptotic complexity con-
tinues to be important for computer science, there
are other issues to address. Asymptotic analysis has
been mostly successful in delineating worst case per-
formance. The comparisons are only valid for large
inputs, something meaningless in computational sci-
However, a more important criticism can be
leveled: the current scheme does not address how
fast the algorithms approach their asymptotic speeds.
This criticism can also be leveled against the devel-

ence.
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opment of numerical codes. New methods and ideas
are available and should be explored[35, 10].

4.2.2 Practical Development Support

While foundations have a place in supporting com-
putational science, computer science can address is-
sues in the development tools and techniques for the
implementation of models in the heterogeneous envi-
ronment. In this section, we allude to some concrete
suggestions for research. This material is a very short
version of [34].

Some areas, such as architecture, operat-
ing systems, and graphics, have applications to
computer science as well as computational science.
We have alluded to the need for problem-solving
environments[15] that make use of areas such as com-
putational geometry and artificial intelligence. FEven
an area such as database management—which we
assoclate more with business systems than scien-
tific systems—has important applications in manag-
ing the large volume of data generated in many types
of scientific experiments. Two areas should receive
special mention: software engineering and program-
ming languages.

The software engineering of scientific systems
can be quite different from other kinds of systems.
While the concerns are much the same, the method
may be different. Scientific models evolve over time;
hence, the management of change assumes special im-
portance. The role of the specification 1s evolution-
ary and based on analysis. It is also the case that
the specification is not open to negotiation. Testing
assumes a different dimension since 1t is often hard
to determine what the “right answer” is.

Programming languages are an important part
of the development of computational science. We are
not just thinking of the eternal “Fortran wversus C”
discussion. The basis of design for most scientific
systems is matrix-theoretic. Even problems that are
only in a single variable may employ matrices—it is
impossible to talk about quadrature without talking
about “grids” and matrices. Primitives in compu-
tational matrix algebra probably look more like the
BLAS than one might conclude from a linear alge-
bra text. There are also many special matrix shapes
which need to be supported. With regards to arith-
metic, there is the ongoing problem of dealing with
interrupts and the proper support for IEFE arith-
metic.
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5 Summary

Computational science is an emerging discipline offer-
ing opportunities for computer scientists. Computa-
tional science i1s an interdisciplinary approach to ad-
dressing the Grand Challenges, whose solutions are
deemed vital to the economic health of the United
States. The opportunities for participation in com-
putational science range from the traditional areas
of computer science—such as language development,
system design, and (non-numerical) algorithms—to
decidedly new areas such as software engineering re-
lated the the development and justification of scien-
tific programs.

The excitement of computational science is in
renovating the scientific research paradigm. There
are three goals:

1. To find and eliminate unwarranted assumptions
and approximations in models;

2. To correctly marry the appropriate algorithms to
the appropriate architecture given a model and
its parameter space; and

3. To deal with the complexity and veracity of the
programming process.

The computational science program proposes to de-
velop a new approach to science by the principles:
physical exactness, guaranteed computability, and
bounded errors.

The organizational paradigm is an integrated,
interdisciplinary focus on applications-algorithms-
architectures—that is, the focus is on solving a class
of problems rather than generating new pieces which
might be fit together into a solution.

The goals for computational science courses
are:

1. To create a healthy sense of what computation
can and cannot do with respect to scientific mod-
els.

2. To instill appreciation of the application-
algorithm-architecture nature of computational
science.

3. To expose the students to the consequences of
not following proper computational principles.

The conduct of the courses reflects the philos-
ophy of the professors as well as the subjects them-
selves. Qur emphasis reflects experiences gained in
industry: 1t is imperative that the students work in
wnterdisciplinary groups. It is important that the
groups understand that each member has a special
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contribution based on her/his background. We also
emphasize the requirement for successive refinements
to the original model—something students tend not
to understand until they see the answer unravel be-
fore them.

The concept of “laboratory” has meaning only
when teaching “laboratory techniques.” These tech-
niques range from using electronic mail and programs
such as ftp to benchmarking and running numerical
experiments. We emphasize throughout the course,
not just in the laboratory exercises, that self-criticism
and self-analysis is an indispensable part of compu-
tational work.

While computational science is not for every
student and researcher, there are plenty of exciting
problems to be addressed. It is time to make compu-
tational science part of computer science—and wvice
versa.
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